Synthesis of novel alkoxycarbonyl thiosemicarbazide molecular tweezers derived from deoxycholic acid under microwave irradiation Yu Chen, ZhiGang Zhao*, XingLi Liu and ZhiChuan Shi

College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China

A series of novel 12α -alkoxycarbonyl thiosemicarbazide molecular tweezers based on 3α -(1-naphthoyl) deoxycholic acid methyl ester were synthesised under microwave irradiation. Their structures were characterised by ¹H NMR, IR, MS spectra and elemental analysis. Their chiral recognition properties for the methyl esters of amino acids were investigated. The preliminary results showed that these molecular tweezers have good enantioselective recognition for *D/L*-amino acid methyl esters.

Keywords: molecular tweezers, deoxycholic acid, substituted thiosemicarbazide, molecular recognition, microwave irradiation

The study of the recognition of the amino acid components of proteins is an important aspect of various fields of the chemistry.^{1,2} Among the various types of artificial receptors which have been designed are a new class of molecular tweezer derived from the steroid cholic acid. This is an ideal building block for the construction of molecular tweezers based its organized structural characteristics.³⁻⁹ In recent years, some molecular tweezers based on steroidal cholic acid have been designed and synthesised.^{10,11} To the best of our knowledge, however, the synthesis and recognition of molecular tweezers based on deoxycholic acid containing alkoxycarbonyl thios-emicarbazide unit in which three NH groups are directed towards the centre of the cavity, has not been reported. The NH group can hydrogen bond with substrates in the process of molecular recognition.

The application of microwave techniques for organic synthesis has attracted considerable interest in recent years.^{12–14} It provides a unique chemical process with special attributes such as ease of manipulation, enhanced reaction rates, clean reaction outcomes and high yields. In view of this, we report a simple, safe and rapid synthetic method of artificial receptors based on deoxycholic acid containing alkoxycarbonyl thiosemicarbazide unit. In addition, avoiding the use of toxic phosgene, triphosgene was used in the synthetic process. This provides a safe and eco-friendly synthetic process for these molecular tweezers. The synthetic route is shown in Scheme 1.

Result and discussion

As shown in Scheme 1, deoxycholic acid 1 was converted to methyl 3α , 12α -dihydroxy-7-deoxy-5 β -cholan-24-oate 2 following a reported procedure.¹⁵

As shown in Scheme 2, intermediates **8a–1** were obtained following the previous method.¹⁶

The melting point of substituted thiosemicarbazides $8a-1^{17-28}$ is shown in Table 1.

We took the synthesis of 5a and carried out several experiments under different conditions, such as microwave irradiation power, time and solvent to obtain the best results of this reaction. The typical results are shown in Tables 2–5.

As shown in Table 2, we irradiated the reaction using different powers for the same reaction time (12 min). As a result, 240 W was identified as the optimum power.

As shown in Table 3, we found that 12 min was the optimum reaction time when the yield was the highest under the same power (240 W). However, more byproducts were obtained when the reaction time was increased.

 CH_2Cl_2 , $CHCl_3$ and THF were compared to evaluate the solvent effect on the reaction. Different solvents were employed under the similar reaction conditions, and the results are shown

in Table 4. Considering CH_2Cl_2 is less toxic than $CHCl_3$, THF and easily removed than the other two solvents, we conclude that CH_2Cl_2 is the best solvent in this reaction.

As shown in Table 5, we compared the synthesis of molecular tweezers **5a–l** by microwave irradiation and conventional heating. Compared to conventional thermal heating, microwave irradiation greatly decreased the reaction time from 300–540 min to 12–15 min. It was obvious that yields were increased from 65–85% to 89–94%. From these data, we conclude that microwave irradiation method is a rapid, efficient, and environmentally friendly methodology.

The recognition by the molecular tweezers 5h, 5j for some amino acid methyl esters has been investigated by UV-Vis spectra titration in CHCl3 at 25 °C. The titration data were analysed by using the Hildebrand-Benesi equation.²⁹ The plot with $1/\Delta A$ versus the $1/[G_0]$ gave a straight line (Fig. 1), supporting the stoichiometry of 1:1 host-guest complexes. Using the linear fitting method, we obtained the associate constants of complex. The results indicate that molecular tweezers 5h, 5j not only recognise all amino acid methyl esters examined but also exhibit higher selectivity for D-amino acid methyl esters. The association constants of molecular tweezer 5h, for instance, are 242.45, 253.04 L·mol⁻¹ for D-Phe-OMe, D-Tyr-OMe, while the constants of **5h** are 98.05, 72.30 L·mol⁻¹ for L-Phe-OMe, L-Tyr-OMe. The K_D/K_L is 2.47 and 3.50 respectively. The UV-Vis plot of 5h for D-Tyr-OMe is shown in Fig. 2.

The enantioselective recognition of molecular tweezers **5h**, **5j** for some amino acid methyl esters has also been investigated by computer-aided molecular modelling using Chem 3D program. When the host **5h** at the minimum energy, its conformation is a tweezer type, which has the ability to form complex with guest molecules. The minimum energy conformation of **5h** is shown in Fig.3. The chiral recognition ability comes from the inherent asymmetry of deoxycholic acid, and the main recognition driving forces are the hydrogen bonding and π - π stacking interaction between the host and guest molecules. The details of molecular tweezers **5a–l** are under further studies.

Experimental

Melting points were determined on a micro-melting point apparatus and are uncorrected. IR spectra were obtained on 1700 Perkin-Elmer FTIR using KBr disks. ¹H NMR spectra were recorded on a Varian INOVA 400 MHz spectrometer using CDCl₃ as solvent and TMS as internal standard. Mass spectra were determined on Finnigan LCQ^{DECA} instrument. Elemental analysis was performed on a Carlo-Erba-1106 autoanalyzer. Microwave irradiation was carried out with a MCL-3 microwave oven at full power (700 W), which was modified from domestic microwave oven and tested to conform to the performance index before use. All the solvents were purified before use. Optical rotation was measured on a Wzz-2B polarimeter. All the solvents were purified before use.

^{*} Correspondent. E-mail: zzg63129@yahoo.com.cn

Scheme 1 Synthetic route of molecular tweezers 5a–I. Reagents: i, CH₃OH, CH₃COCI; ii, 1-naphthoyl chloride, K₂CO₃; iii, CH₂Cl₂, triphosgene, pyridine; iv, substituted thiosemicarbazide, pyridine.

8a~8l

Scheme 2 Synthetic route of substituted thiosemicarbazides 8a-I.

Table 1	The melting point of substituted thiosemicarbazides
8a–l	

Product	Formula	M.p./°C	Lit. m.p./°C
8a	C ₇ H ₈ N₃CIS	126–127	125 ¹⁷
8b	C ₈ H ₁₁ N ₃ OS	157–158	161 ¹⁸
8c	C ₈ H ₁₁ N ₃ OS	155–156	159 ¹⁹
8d	$C_7H_{10}N_3S$	137–138	136–138 ²⁰
8e	$C_{11}H_{11}N_{3}S$	135–136	138–139 ²¹
8f	C ₇ H ₈ N ₃ BrS	141–142	140 ²²
8g	$C_8H_{11}N_3S$	135–136	137 ²³
8ĥ	C ₇ H ₈ N ₃ FS	137–138	138 ²⁴
8i	C ₇ H ₉ N ₃ OS	160-162	160 ²⁵
8j	C ₇ H ₈ N ₃ CIS	178–179	178 ²⁶
8k	C ₇ H ₈ N ₃ BrS	165–168	163–165 ²⁷
81	C ₈ H ₁₁ N ₃ OS	147–148	152 ²⁸

Table 2 The effect of microwave nowers on vields

able z	me enect	of micro	wave po	werson	yielus		
Power/W	100	150	200	240	300	350	
Yield/%	64	70	85	93	89	80	
Table 3 The effect of microwave irradiation time on yields							

Time/min	10	11	12	14	18	20
Yield/%	76	87	93	90	85	81

Preparation of compound **3**; general procedure 1-Naphthoic acid (1.2 mmol) was added to SOCl₂ (3 mL) and 1 drop of dry DMF at room temperature. 1-Naphthoyl chloride was obtained after refluxing 3 h in 65 °C. The excess SOCl₂ was removed under

Table 4 The effect of solvent on yields

Entry Solvent		Yield/%	Volume of solvent/mL		
1		60 93	20 10		
3	CHCI ₃	90	10		

 Table 5
 Synthetic comparison of molecular tweezers 5a–5l

 between microwave irradiation and conventional heating

Comp.	Conventio	nal method	Microway	$t_{\rm C}{}^{\rm a}\!/t_{\rm MW}{}^{\rm b}$	
	t/min	Yield/%	t/min	Yield/%	
5a	480	67	12.0	93	40
5b	540	80	12.0	92	45
5c	480	65	13.0	91	37
5d	540	70	12.0	92	45
5e	360	79	15.0	90	24
5f	480	81	12.0	90	40
5g	480	85	12.0	94	40
5ĥ	300	79	14.0	92	21
5i	300	82	15.0	89	20
5j	480	78	12.0	92	40
5k	540	80	13.0	91	42
51	480	76	12.0	92	40

 $T_{\rm C}{}^{\rm a},$ time of conventional heating method; $T_{\rm MW}{}^{\rm b},$ time of microwave irradiation method.

Fig. 1 Typical plot of $1/\Delta A$ vs the $1/[G_0]$ for the inclusion complexation of tweezer **5h** with *D*-Tyr-OMe in CHCl₃ at 25 °C.

reduced pressure, then mixed with the methyl 3α , 12α -dihydroxy-7deoxy- 5β -cholan-24-oate (1 mmol). The reaction mixture was irradiated for 5 min at 460 W using solid K₂CO₃ as a support. The reaction was monitored by TLC until it was completed. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate (10 mL×3). The organic layer was washed successively with 10% NaHCO₃ (10 mL×3), brine (10 mL×3), and finally dried over anhydrous Na₂SO₄. The solvent was evaporated to give the crude product. The crude product was purified by column chromatography on silica gel H with dichloromethane/ethyl acetate as eluant. The physical and spectra data of the compound **3** are as follows.

3: White crystals, yield 89%, m.p. 42–43 °C; $[a]_{20}^{20}$ +21.4 (*c* 0.15, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.87 (d, *J* = 8.4 Hz, 1H, ArH), 8.20 (d, *J* = 7.2 Hz, 1H, ArH), 8.01 (d, *J* = 8.0 Hz, 1H, ArH), 7.88 (d, *J* = 8.0 Hz, 1H, ArH), 7.62–7.46 (m, 3H, ArH), 5.14–5.06 (m, 1H, 3 β -H), 4.01 (s, 1H, 12 β -H), 3.67 (s, 3H, COOCH₃), 0.93 (d, *J* = 6.8 Hz, 3H, 21-CH₃), 0.89 (s, 3H, 19-CH₃), 0.70 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3549, 2978, 2871, 1717, 1515, 1472, 1131; ESI–MS *m/z* (%): 561.4 [(M+1)⁺, 100]. Anal. Calcd for C₃₆H₄₈O₅: C, 77.11; H, 8.63; Found: C, 76.98; H, 8.57%.

Microwave method for preparation of 5a-l

Triphosgene (0.2 mmol) was added to a solution of compound **3** (0.5 mmol) in 10 mL dry CH_2Cl_2 and 0.1 mL dry pyridine at room

temperature. The reaction mixture was irradiated for 9 min at 200 W to give compound **4**. The substituted thiosemicarbazide (0.5 mmol) and dry pyridine 0.2 mL were added directly to the mixture, which was then irradiated continually for 3–6 min at 240 W. The solvent was removed and the residue was diluted with ethyl acetate 20 mL and washed with 10% NaHCO₃ (10 mL×3), brine (10 mL×3), and finally dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography on silica gel H with dichloromethane/ethyl acetate as eluant. The whole progress was monitored by TLC. The physical and spectra data of the compounds **5a–1** are as follows.

5a: White solid, yield 93%, m.p. 107–108 °C; $[\alpha]_{20}^{20}$ + 133.4 (c 0.15, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.85 (d, J = 8.8 Hz, 1H, ArNHCS), 8.42 (s, 1H, NH), 8.16 (d, J = 6.8 Hz, 1H, ArH), 8.02–7.96 (m, 2H, ArH), 7.89 (d, J = 8.4 Hz, 1H, ArH), 7.63–7.46 (m, 5H, ArH), 7.13–7.10 (m, 2H, ArH), 6.86 (s, 1H, CONH), 5.11 (s, 1H, 12 β -H), 5.07–5.03 (m, 1H, 3 β -H), 3.64 (s, 3H, COOCH₃), 0.96 (s, 3H, 19-CH₃), 0.87 (d, J = 6.0 Hz, 3H, 21-CH₃), 0.74 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3336, 2934, 2859, 1711, 1594, 1524, 1470, 1246, 1018, 777; ESI–MS m/z (%): 788.4 [(M+1)⁺, 100]. Anal. Calcd for C₄₄H₅₄ClN₃O₆S: C, 67.03; H, 6.90; N, 5.33. Found: C, 66.95; H, 6.85; N, 5.29%.

5b: Pale yellow crystal, yield 92%, m.p. 102–103 °C; $[a]_D^{20}+122.7$ (c 0.10, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.87 (d, J = 9.2 Hz, 1H, ArNHCS), 8.18 (d, J = 7.6 Hz, 1H, ArH), 8.01 (d, J = 8.4 Hz, 2H, ArH+NH), 7.89 (d, J = 8.0 Hz, 1H, ArH), 7.62–7.47 (m, 4H, ArH), 7.21 (s, 1H, ArH), 7.00 (s, 1H, ArH), 6.88 (s, 2H, ArH), 6.75 (d, J = 6.8 Hz, 1H, CONH), 5.11 (s, 1H, 12 β -H), 5.06 (s, 1H, 3 β -H), 3.75 (s, 3H, COOCH₃), 3.64 (s, 3H, COOCH₃), 0.97 (s, 3H, 19-CH₃), 0.89 (d, J = 6.0 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3320, 2942, 2859, 1715, 1603, 1453, 1246, 1006, 780; ESI–MS *m/z* (%): 784.4 [(M+1)⁺, 100]. Anal. Calcd for C₄₅H₅₇N₃O₇S: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.91; H, 7.29; N, 5.39%.

5c: White solid, yield 91%, m.p. 95–96 °C; $[\alpha]_0^{20}$ +114.9 (c 0.11, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.87 (d, J = 8.4 Hz, 1H, ArNHCS), 8.21 (d, J = 7.2 Hz, 1H, ArH), 8.01 (d, J = 8.0 Hz, 2H, ArH+NH), 7.89 (d, J = 8.4 Hz, 1H, ArH), 7.63–7.48 (m, 4H, ArH), 7.13–7.09 (m, 1H, ArH), 6.96–6.92 (m, 2H, ArH), 6.83–6.79 (m, 2H, ArH+CONH), 5.12 (s, 1H, 12 β -H), 5.08–5.03 (m, 1H, 3 β -H), 3.78 (s, 3H, COOCH₃), 3.64 (s, 3H, COOCH₃), 0.97 (s, 3H, 19-CH₃), 0.87 (d, J = 6.4 Hz, 3H, 21-CH₃), 0.74 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3316, 2943, 2869, 1717, 1595, 1541, 1449, 1242, 1014, 790; ESI–MS m/z (%): 784.5 [(M+1)⁺, 100]. Anal. Calcd for C₄₅H₅₇N₃O₇S: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.91; H, 7.29; N, 5.39%.

5d: White solid, yield 92%, m.p. 109–110 °C; $[\alpha]_{20}^{20}$ +78.4 (c 0.12, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.86 (d, *J* = 8.8 Hz, 1H, ArNHCS), 8.17 (d, *J* = 6.8 Hz, 2H, ArH+NH), 8.01 (d, *J* = 8.0 Hz, 1H, ArH), 7.89 (d, *J* = 8.0 Hz, 1H, ArH), 7.63–7.46 (m, 4H, ArH), 7.35–7.26 (m, 4H, ArH), 7.19 (s, 1H, ArH), 6.87 (s, 1H, CONH), 5.11 (s, 1H, 12β-H), 5.08–5.05 (m, 1H, 3β-H), 3.64 (s, 3H, COOCH₃), 0.97 (s, 3H, 19-CH₃), 0.89 (d, *J* = 6.4 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3411, 2934, 2859, 1711, 1599, 1512, 1445, 1246, 1014, 786; ESI–MS *m/z* (%): 754.4 [(M+1)⁺, 100]. Anal. Calcd for C₄₄H₅₄N₃O₆S: C, 70.09; H, 7.35; N, 5.57. Found: C, 69.95; H, 7.28; N, 5.60%.

5e: Pale yellow crystal, yield 90%, m.p. 110–111 °C; $[a]_D^{20}$ +136.3 (c 0.10, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.83 (d, *J* = 8.4 Hz, 1H, ArNHCS), 8.12 (d, *J* = 7.2 Hz, 2H, ArH+NH), 7.99 (d, *J* = 8.0 Hz, 2H, ArH), 7.87–7.85 (m, 3H, ArH), 7.60–7.43 (m, 8H, ArH), 6.94 (s, 1H, CONH), 5.10 (s, 1H, 12β-H), 5.02 (s, 1H, 3β-H), 3.60 (s, 3H, COOCH₃), 0.96 (s, 3H, 19-CH₃), 0.87 (d, *J* = 4.4 Hz, 3H, 21-CH₃), 0.74 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3432, 2938, 2859, 1711, 1653, 1508, 1466, 1242, 1018, 777; ESI–MS *m/z* (%): 804.5 [(M+1)⁺, 100]. Anal. Calcd for C₄₈H₅₇N₃O₆S: C, 71.70; H, 7.15; N, 5.23. Found: C, 71.66; H, 7.18; N, 5.20%.

5f: White solid, yield 90%, m.p. 118–119 °C; $[a]_{20}^{20}$ +93.7 (c 0.10, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.85 (d, *J* = 8.8 Hz, 1H, ArNHCS), 8.37 (s, 1H, NH), 8.16 (d, *J* = 7.2 Hz, 1H, ArH), 8.01 (d, *J* = 8.0 Hz, 1H, ArH), 7.89 (d, *J* = 8.0 Hz, 1H, ArH), 7.80 (s, 1H, ArH), 7.63–7.46 (m, 5H, ArH), 7.33–7.30 (m, 1H, ArH), 7.18–7.00 (m, 1H, ArH), 6.79 (s, 1H, CONH), 5.11 (s, 1H, 12β-H), 5.07–5.02 (m, 1H, 3β-H), 3.64 (s, 3H, COOCH₃), 0.96 (s, 3H, 19-CH₃), 0.87 (d, *J* = 6.4 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3435, 2926, 2861, 1715, 1642, 1530, 1464, 1244, 1009, 781; ESI–MS *m/z* (%): 832.4 [(M+1)⁺, 100]. Anal. Calcd for C₄₄H₅₄BrN₃O₆S: C, 63.45; H, 6.53; N, 5.05. Found: C, 63.41; H, 6.49; N, 5.01%.

Fig. 2 UV-vis spectra of molecular tweezer **5h** (1.88×10^{-5} mol L⁻¹) in the presence of *D*-Tyr-OMe:(a) 0 mol L⁻¹; (b) 0.30×10^{-3} mol L⁻¹; (c) 0.60×10^{-3} mol L⁻¹; (d) 0.90×10^{-3} mol L⁻¹; (e) 1.20×10^{-3} mol L⁻¹; (f) 1.50×10^{-3} mol L⁻¹; (g) 1.80×10^{-3} mol L⁻¹; (h) 2.10×10^{-3} mol L⁻¹; (i) 2.40×10^{-3} mol L⁻¹ with λ_{max} at 244.0 nm.

Fig. 3 Minimum energy conformation of molecular tweezer 5h.

5g: Colourless crystals, yield 94%, m.p. 104–106 °C; $[\alpha]_{10}^{0}$ +77.2 (c 0.13, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.86 (d, *J* = 8.8 Hz, 1H, ArNHCS), 8.16 (d, *J* = 6.8 Hz, 1H, ArH), 8.01 (d, *J* = 8.0 Hz, 2H, ArH+NH), 7.89 (d, *J* = 8.0 Hz, 1H, ArH), 7.62–7.46 (m, 4H, ArH), 7.20–7.10 (m, 4H, ArH), 6.88 (s, 1H, CONH), 5.10 (s, 1H, 12β-H), 5.08–5.02 (m, 1H, 3β-H), 3.64 (s, 3H, COOCH₃), 0.97 (s, 3H, 19-CH₃), 0.89 (d, *J* = 6.4 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3431, 2938, 2867, 1714, 1623, 1519, 1453, 1245, 1017, 785; ESI–MS *m*/*z* (%): 1558.6 [(2M+23)⁺, 100]. Anal. Calcd for C₄₅H₅₇N₃O₆S: C, 70.37; H, 7.48; N, 5.47. Found: C, 70.31; H, 7.39; N, 5.44%.

5h: White solid, yield 92%, m.p. 103–104 °C; $[\alpha]_D^{20}$ +157.8 (c 0.11, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.85 (d, *J* = 8.8 Hz, 1H, ArNHCS), 8.35 (s, 1H, NH), 8.16 (d, *J* = 7.2 Hz, 1H, ArH), 8.01 (d,

J = 8.4 Hz, 1H, ArH), 7.89 (d, *J* = 8.0 Hz, 1H, ArH), 7.82 (s, 1H, ArH), 7.63–7.46 (m, 3H, ArH), 7.33–7.31 (m, 1H, ArH), 7.20–7.16 (m, 1H, ArH), 7.12–7.10 (m, 1H, ArH), 6.86–6.82 (m, 2H, ArH+CONH), 5.11 (s, 1H, 12β-H), 5.08–5.02 (m, 1H, 3β-H), 3.64 (s, 3H, COOCH₃), 0.97 (s, 3H, 19-CH₃), 0.88 (d, *J* = 6.4 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3302, 2943, 2869, 1715, 1607, 1540, 1450, 1202, 1018, 781; ESI–MS *m/z* (%): 772.3 [(M+1)⁺, 100]. Anal. Calcd for C₄₄H₅₄FN₃O₆S: C, 68.46; H, 7.05; N, 5.44. Found: C, 68.39; H, 7.08; N, 5.38%.

5i: Pale yellow crystal, yield 89%, m.p. 112–113 °C; $[\alpha]_{10}^{20}$ +94.1 (c 0.11, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.86 (d, *J* = 8.8 Hz, 1H, ArNHCS), 8.60 (s, 1H, NH), 8.19 (d, *J* = 6.4 Hz, 1H, ArH), 7.95 (d, *J* = 8.0 Hz, 1H, ArH), 7.85 (d, *J* = 8.4 Hz, 1H, ArH), 7.76 (s, 1H, OH), 7.63–7.45 (m, 4H, ArH), 7.19–7.15 (m, 1H, ArH), 7.06–6.82 (m, 3H, ArH), 6.71 (d, *J* = 7.2 Hz, 1H, CONH), 5.09 (s, 1H, 12 β -H), 5.05–5.01 (m, 1H, 3 β -H), 3.66 (s, 3H, COOCH₃), 0.95 (s, 3H, 19-CH₃), 0.84 (d, *J* = 5.6 Hz, 3H, 21-CH₃), 0.74 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3422, 3046, 2936, 2867, 1713, 1607, 1507, 1453, 1238, 1010, 786; ESI–MS *m*/*z* (%): 770.4 [(M+1)⁺, 100]. Anal. Calcd for C₄₄H₅₅N₃O₇S: C, 68.63; H, 7.20; N, 5.46. Found: C, 68.60; H, 7.18; N, 5.44%.

5j: White solid, yield 92%, m.p. 114–115 °C; $[\alpha]_{20}^{0}$ + 98.2 (c 0.14, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.84 (d, J = 8.4 Hz, 1H, ArNHCS), 8.34 (s, 1H, NH), 8.15 (d, J = 7.2 Hz, 1H, ArH), 8.01 (d, J = 8.0 Hz, 1H, ArH), 7.89 (d, J = 8.0 Hz, 1H, ArH), 7.82 (s, 1H, ArH), 7.63–7.46 (m, 3H, ArH), 7.34–7.19 (m, 4H, ArH), 6.86 (s, 1H, CONH), 5.10 (s, 1H, 12β-H), 5.07–5.02 (m, 1H, 3β-H), 3.64 (s, 3H, COOCH₃), 0.96 (s, 3H, 19-CH₃), 0.86 (d, J = 6.4 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3436, 2942, 2872, 1711, 1632, 1516, 1458, 1238, 1010, 782; ESI–MS *m*/*z* (%): 1599.4 [(2M+23)⁺, 100]. Anal. Calcd for C₄₄H₅₄ClN₃O₆S: C, 67.03; H, 6.90; N, 5.33. Found: C, 66.95; H, 6.83; N, 5.29%.

5k: White solid, yield 91%, m.p. 116–117 °C; $[\alpha]_{10}^{\infty}$ +121.4 (c 0.11, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.90–8.83 (m, 1H, ArNHCS), 8.37 (s, 1H, NH), 8.21–8.14 (m, 1H, ArH), 8.01–7.82 (m, 3H, ArH), 7.63–7.46 (m, 3H, ArH), 7.34–7.26 (m, 4H, ArH), 6.89 (s, 1H, CONH), 5.09 (s, 1H, 12 β -H), 5.06–5.02 (m, 1H, 3 β -H), 3.64 (s, 3H, COOCH₃), 0.95 (s, 3H, 19-CH₃), 0.85 (d, *J* = 6.4 Hz, 3H, 21-CH₃), 0.74 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3436, 2940, 2864, 1714, 1520, 1503, 1449, 1242, 1014, 786; ESI–MS *m/z* (%): 832.4 [(M+1)⁺,

100]. Anal. Calcd for $C_{44}H_{54}BrN_3O_6S$: C, 63.45; H, 6.53; N, 5.05. Found: C, 63.41; H, 6.49; N, 5.01%.

51: White solid, yield 92%, m.p. 107–108 °C; $[\alpha]_{10}^{20}$ +145.6 (c 0.11, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.86 (d, J = 8.4 Hz, 1H, ArNHCS), 8.17 (d, J = 7.2 Hz, 1H, ArH), 8.01 (d, J = 8.4 Hz, 1H, ArH), 7.89 (d, J = 8.0 Hz, 2H, ArH+NH), 7.62–7.47 (m, 4H, ArH), 7.26 (s, 2H, ArH), 6.84–6.82 (m, 3H, ArH+CONH), 5.10 (s, 1H, 12 β -H), 5.05 (s, 1H, 3 β -H), 3.73 (s, 3H, COOCH₃), 3.64 (s, 3H, COOCH₃), 0.97 (s, 3H, 19-CH₃), 0.90 (d, J = 6.0 Hz, 3H, 21-CH₃), 0.75 (s, 3H, 18-CH₃); IR (KBr, cm⁻¹): 3411, 2942, 2868, 1716, 1618, 1515, 1457, 1244, 1025, 783; ESI–MS *m*/*z* (%): 784.4 [(M+1)⁺, 100]. Anal. Calcd for C₄₅H₅₇N₃O₇S: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.91; H, 7.29; N, 5.39%.

Conventional heating method for preparation of 5a-5l

Triphosgene (0.2 mmol) was added to a solution of compound **3** (0.5 mmol) in 20 mL dry CH_2Cl_2 and 0.1 mL dry pyridine at room temperature. The solution was refluxed for 3 h, to give compound **4**. The substituted thiosemicarbazide (0.5 mmol) and dry pyridine 0.2 mL were added directly to the mixture which was refluxed for a further 2–6 h. The solvent was removed and the residue was diluted with ethyl acetate 20 mL and washed with 10% NaHCO₃ (10 mL×3), brine (10 mL×3), and finally dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography on silica gel H with dichloromethane/ethyl acetate as eluant, in 65–5% yields.

We thank the Natural Science Foundation of the State Ethnic Affairs Commission of P.R. China (Project No.09XN08) for the financial support.

Received 21 March 2010; accepted 21 May 2010 Paper 1000019 doi: 10.3184/030823410X520732 Published online: 28 July 2010

References

- 1 A. Metzger, K. Gloe and H. Stephan, J. Org. Chem., 1996, 61, 2051.
- 2 Z.G. Zhao, X.L. Liu and S.H. Chen, *Chin. J. Org. Chem.*, 2009, 29, 1336 (in Chinese).
- 3 K.S. Kim and H.S. Kim, *Tetrahedron*, 2005, **61**, 12366.
- 4 J.T. Luo, Y.L. Chen and X.X. Zhu, Synlett., 2007, 14, 2201.
- 5 H.O. Jeung and T.C. Kui, Tetrahedron., 2008, 64, 6488.
- 6 S.Y. Liu, K.Y. Law, Y.B. He and W.H. Chan, *Tetrahedron Lett.*, 2006, **47**, 7857.
- 7 H. Wang, W.H. Chan and W.M.A. Lee, Org. Biomol. Chem., 2008, 6, 929.
- 8 C. Mamta, U. Shailesh and S.P. Pramod, *Tetrahedron*, 2007, 63, 171.
- H.K. Byeong, S.L. Chang, H.S. Jun and P.H. Him, *Talanta*, 2003, **61**, 393.
 K.S. Kim, H.S. Jang and H.S. Kim, *J. Korean. Chem. Soc.*, 2006, **27**,
- 1445. 11 X.M. Wu, Z.G. Zhao and X.L. Liu, Chin. J. Org. Chem., 2009, 29, 956
- 11 X.M. Wu, Z.G. Zhao and X.L. Liu, Chin. J. Org. Chem., 2009, 29, 956 (in Chinese).
- 12 H. Naeimi and L. Moradi, Catalysis Commun., 2006, 7, 1067.
- 13 V. Pollshettiwar and S.V. Rajender, Acc. Chem. Res., 2008, 41, 629
- 14 E. Ramesh and R. Raghunathan, *Tetrahedron Lett.*, 2008, **49**, 1812.
- 15 X.L. Liu, Z.G. Zhao and B.T. Zeng, Chin. J. Org. Chem., 2007, 27, 994 (in Chinese).
- 16 C.Y. Liu, G.W. Ying, J. Qian, Z. Li and A.H. Yu, *Chem. Reag.*, 2003, **25**, 160 (in Chinese).
- 17 A.J. Cowper, J. Ind. Chem. Soc., 1981, 58, 1087.
- 18 K. Joseph, DE 832891 1952.
- 19 M. Tisler, Croatica Chem. Acta, 1965, 28, 147.
- 20 S.K. Chawla, Polyhedron., 2006, 25, 627
- 21 M. Tisler, Croatica Chem. Acta, 1956, 28, 147.
- 22 D.A. Benson, Nucl. Acids Res., 2000, 28, 15.
- 23 R.W. Bost, J. Am. Chem. Soc., 1931, 53, 652
- 24 D.L. Klayman, J. Med. Chem., 1979, 22, 855.
- 25 A. Wahab, Boll. Chim. Farm., 1978, 117, 107.
- 26 M. Upalkanti, *Chem. Pharm. Bull.*, 2004, 52, 178.
- 27 M. Upalkanti, *Chem. Pharm. Bull.*, 2004, 52, 178
 27 M. Upalkanti, *Chem. Pharm. Bull.*, 2004, 52, 178
- 27 M. Oparkand, *Chem. Tharm. Butt.*, 2004, 32, 178.
 28 R. Stanislav, *Colletc.Czech.Chem.Commun.*, 1986, 5, 1692.
- 29 C.H. Xue, R. Hu, Q.M. Mu, F. Li and S.H. Chen, *Acta Chim. Sinica*, 2000, 58, 717 (in Chinese).